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Abstract

LoRA (Low-Rank Adaptation) has emerged as a strat-
egy for efficiently updating dense neural network layers with 
plug-gable low-rank matrices derived from the original ma-
trix of the network’s parameters. Moreover, it has signif-
icant advantages in cross-task generalization and privacy 
preservation via different training conditions. Hence, gain-
ing a well-rounded understanding of LoRA and its other 
variants is essential. This survey will focus on the LoRA 
variants’ (1) Downstream adaptation, (2) math tasks per-
formance, and (3) Reasoning skills given different dif-
ficulty l evels a ssessing t heir a bilities o n L arge Language 
Model. Specifically, w e w ill r un s everal b enchmark tests 
on different variants of LoRA (including LoRA itself) using 
model LLaMA-3 (8 bit) on dataset GSM8k and GSM-Plus, 
dataset that primarily focusing on leverage model’s math-
ematical inference ability, and analyze their behavior. At 
last, this survey will discuss the potential future directions 
in the field, propagating some novel ideas worth attention.

1. Introduction

Due to the fast boost and growing attention to LLMs,
the parameter scales of the current pre-trained LLMs are
rapidly increasing, enabling better generalization of vari-
ous tasks with enhanced emergent abilities. In the past few
years, the parameter scales of pre-trained language mod-
els have increased in a scale at least for about thousands
of times (e.g., BERT with 330M parameters [5] to GPT4
with 1.8 trillion parameters [20]). Although these founda-
tional models with significant parameters showed a signif-
icant ability in general problem-solving, their abilities on
some downstream tasks are still limited due to the knowl-
edge boundaries. Therefore, applying further fine-tuning to
a specific focus is essential to expand the knowledge bound-
aries for such foundational models.

However, the novel approach of model fine-tuning is to

fine-tune the full parameters of an LLM, known as full fine-
tuning, which is extremely computationally and memory-
expensive. For instance, fully fine-tuning LLaMA2-7B [3]
requires approximately 62GB of memory, which is way
beyond the scope that regular commercial GPUs can pro-
vide (e.g., RTX4090 provides only 24 GB GDDR6X mem-
ory). Hence, various parameter-efficient fine-tuning (PEFT)
methods have been proposed to reduce the high computa-
tion cost. Regarding whether extra parameters are involved
in the fine-tuning procedure or not, PEFT methods can
be divided into two categories, namely: Extra-parameter
method and Intra-parameter method. The extra-parameter
method freeze all of the original parameters of an LLM and
insert a set of learnable parameters to optimize the model
input or model layers. This is similar to adapter tuning and
prompt-engineering. In comparison, intra-parameter meth-
ods freeze most of the original parameters and only tune a
small number of parameters such as LISA, LoRA, etc.

In 2020, the predominant parameter-efficient adaptation
technique was Adapter [11] [8]. This method sequen-
tially integrates two adaptation modules (one after attention
and the other after the feed-forward layer) in each Trans-
former [23] [8]. While the adapter did reduce memory
costs in some respects, such modification unwillingly leads
to extra inference latency with an increase in the network’s
depth. Moreover, empirical observation shows that apply-
ing an adapter to LLMs might lead to training instability [2]
[8]. Around the same time, a separate project introduced a
hyper-parameter transfer strategy (HPT), demonstrating the
practicality of transferring trained hyper-parameters across
a model’s width [24] [8]. Such an approach provides more
credence to the rationale behind the extending networks but
lacks comprehensive evidence or theory to explain them
thoroughly while pointing out potential difficulties in ac-
tual adoption. However, the following emergence of LoRA
dragged scholars’ attention due to its well-rounded theory
behind its highly simple idea.

When we do not have access to modify the model’s ar-
chitecture, using intra-parameter methods is optimal. LoRA
is the most widely used intra-parameter due to its ability



Figure 1. Visual abstract of this survey’s focus
Adapted from [25]

to adapt to downstream tasks and simple implementation
requirements. Specifically, LoRA achieves parameter effi-
ciency by updating the dense neural network layers of an
LLM with pluggable low-rank matrices. These matrices are
independent of the LLM and can be stored and reused in
other related downstream tasks. Moreover, such plugin ma-
trices can be combined to derived synthesize pattern learn-
ing to achieve cross-task generalization.

Noting that some previous surveys have mentioned
LoRA and only introduce a small number of LoRA-related
works, or only introduce a few benchmark testing for per-
formance comparison among different LoRA variant. In
this survey, we plan to give a comprehensive overview
of the current progress on LoRA on: Downstream adap-
tation, cross-task generalization, and variants with novel
efficiency-improving methods that boost the computation ef-
ficiency of LoRA. Moreover, this survey will introduce a few
LoRA applications. Overall, this survey is planned to give
a detailed review from background knowledge, current re-
search trends, and technical insights for LoRA.

2. Background

The general idea of performing natural language pro-
cessing consists large scale pretraining on general domain
data and task-wise adaptation on specific domain. To nur-
ture strong downstream task’s solving ability, the novel full-
parameter fine-tuning might leads to downsides on high
computation costs and low transfer ability of model param-
eters. Hence, the low-dimensional intrinsic dimensionality
hypothesis [1] presents that over-parameterized mdoels re-
side on a low intrinsic dimentison. This gives scholars a hint
that we can somewhat achieve proper learning performance
by only updating parameters related to instrinsic rank [18].

Using this hypothesis as a substrate, LoRA [25] proposed
an idea to update dense parameter layers with low-rank ma-
trices disintegration. This leads to enhancement on both
memory and computational efficiency. This section will in-
troduce basic concepts of the theory behind LoRA and ar-
gue its enhancement in training efficiency.

2.1. LoRA [25]

A neural network contains many dense layers (param-
eterized as W0 ∈ Rd×k) which perform matrix multipli-
cation during parameter updates. To adapt the network to
such downstream tasks, the novel approach is to update all
parameters with a gradient ∆W ∈ Rd×k. Formally, we can
write the formula for parameter updating as:

W = W0 +∆W

This process is called full fine-tuning, which is time con-
suming and also computation and memory unfriendly. To
make improvement, LoRA proposed that for a pre-trained
weight matrix W0 ∈ Rd×k, we constrain its update by rep-
resenting the weight matrix with a low-rank decomposition:

W0 +∆W = W0 +BA

where B ∈ Rd×r, A ∈ Rr×k, d, r, k ∈ N, and rank r <<
min(d, k). During training, W0 is frozen and does not re-
ceive gradient updates, while A and B contain trainable pa-
rameters. For initialization, B and A are initialized with a
random Gaussian distribution and zero respectively. In total
the parameter number of the LoRA plugins is r × (d + k),
which is significantly less the d × k. Here we referenced a
graph comparing full fine-tuning and LoRA.

LoRA is highly parameter efficient as it only updates a
small subset of model parameters, enhancing computation
and memory efficiency meanwhile maintaining the infer-
ence latency in a reasonable scope [9] [18]. Further en-
hancement on parameter efficiency contains extending low-
rank matrix to low-rank tensor, and applying Kronecker de-
composition [6] [10] [18], etc.

Furthermore, LoRA is also “Removable” and “indepen-
dent” from the parameter’s of the model after training, mak-
ing the captured patterns in LoRA’s parameters reusable by
different users on different purposes. When we have multi-
ple LoRA modules that are trained for multiple tasks, it is
reasonable to combine these modules and expect a proper
cross-task generalization performance.

In practice, for a Transformer-based LLM specifically,
the dense layer typically refer to the projection matrices
in attention head and feed forward network at the last.
Typically, the original LoRA settings apply it to the query
and value weight matrices in the attention model, and some
following subsequent work showed that applying it to FFN
layer can further improve model’s performance in some re-
spect [8].



2.2. LoRA variants

Though the initiation of LoRA brought researchers a
general concept of PEFT, many aren’t satisfied with the ac-
curacy gap due to the limitation of matrics A and B’s rela-
tive small sizes compare to most models’ original weights.
Recent variants of LoRA have aimed to further improve
LoRA’s generalization and efficiency. For instance:

VeRA: VeRA (Vector-based Random Matrix Adaption)
[13] further reduced the parameter size of the LoRA
adapters. VeRA borrows the concept of random projections,
beliving that only a small fraction of weights in a large neu-
ral network is used to veer its behavior which lead to ex-
pected performance. By adding small vectors d and b, the
matrix multiplication can lead to the same destination as
training a few parameters in the entire matrix would.

Figure 2. From LoRA to VeRA. A and B initialized with random
weights and won’t be trained. Vectors d and b is trained
Adapted from [13]

LoRA-FA: LoRA-FA [26] (LoRA with Fozen-A), is lit-
erally what its name implies: it freezes matrix A. Hence,
same concept of random projections is used here as well.
LoRA-FA utilizes matrix A to serve as a random projection.
Though, LoRA-FA introduces no additional vectors, sug-
gesting training on matrix B. Therefore, consider original
weight matrix has dimension d × k where d = k, freezing
matrix A halves the number of parameters while obtaining
comparable performance to normal LoRA [26].

Figure 3. LoRA-FA freezes matrix A and only trains on matrix B
Adapted from [26]

LoRA-drop: LoRA-drop [14] introduces an algorithm
calculating the importance of each layer. This importance

is exploited further for determining which layers can be en-
hanced using LoRA. Layers with less importance will not
be injected additional LoRA layer. The algorithm of LoRA-
drop hence provides flexibility in terms of using only a sub-
set of LoRA layers, achieving both comparable accuracy as
the original LoRA method and less training time.

Figure 4. LoRA-drop algorithm overview [14]

LISA: LISA (Lyaerwise Importance Sampled AdamW)
[21], similar to lora-drop, addresses memory efficiency is-
sues when fine-tuning LLMs by selectively freezing most
intermediate layers while updating only the important ones.
What is different is that LISA is inspired by the skewed
distribution oflayerwise weight norms observed in LoRA
training. Pan et.al then perform layerwise sampling aimed
to optimize the important layers. Pan et.al claimed LISA
is able to retain or even surpass performance of both LoRA
and full-parameter fine-tuning in a wild range of settings.

AdaLoRA: AdaLoRA (Adaptive LoRA) [27] proposes
another way to determine importance of LoRA parameters.
The authors suggested to consider the singular values of
LoRA matrices as indicators of their importance. That is,
by calculating the square roots of the eigenvalues of the ma-
trices, we can obtain how much variance is captured by the
rows of matrix each. AdaLoRA can thus decide which rows
can be retained or omitted. It’s different from LoRA-drop
that it allows adapters with different ranks to be injected in
various layers, whereas LoRA-drop can only choose either
to inject LoRA layers (all with the same rank) or not to in-
ject LoRA layer at all.

Figure 5. LoRA matrics are given different ranks at different layers
[27]

DoRA: DoRA (Decomposed Low-Rank Adaptation)
[17], brought on the table by NVIDIA, starts with the idea



that each matrix can be decomposed into a product of a
magnitude and a direction. The authors, after decomposed
update weight matrices (δD) from normal fine-tuning pro-
cess and fine-tuning process using LoRA, found a change in
direction and magnitude, suggesting a property mismatch
between normal fine-tuning and fine-tuning using LoRA.
They then proposed DoRA which separate the pretrained
weight matrix W into magnitude vector m of size 1×d and
a direction matrix V enhanced by B×A. On several bench-
marks, DoRA outperforms LoRA in accuracy. The authors
attribute the results to the decomposition of weight updates
into magnitude and direction, causing training similar to the
training done in fine-tuning.

Figure 6. weight matrix W is decomposed into magnitude m and
direction V [17]

LISA: LISA (Lyaerwise Importance Sampled AdamW)
[21], similar to lora-drop, addresses memory efficiency is-
sues when fine-tuning LLMs by selectively freezing most
intermediate layers while updating only the important ones.
What is different is that LISA is inspired by the skewed
distribution oflayerwise weight norms observed in LoRA
training. Pan et.al then perform layerwise sampling aimed
to optimize the important layers. Pan et.al claimed LISA
is able to retain or even surpass performance of both LoRA
and full-parameter fine-tuning in a wild range of settings.

While the above variants represent key improvements, it
is worth noting that there are many other LoRA-based meth-
ods proposed to address similar challenges in parameter-
efficient fine-tuning, each focusing on optimizing specific
aspects such as memory usage, adaptability, or computa-
tional efficiency. These survey aims to select representative
variants that aim to improve different aspect of the original
LoRA approach and evaluate their performance compare to
FT on SOTA Large Language Models.

3. Method

We evaluate the performance of various LoRA fine-
tuning variants on the Llama3-8B model, specifically fine-
tuning on the GSM8k [4] and GSM-Plus [16] datasets. The
Llama3-8B model [19], part of the LLaMA family, has been
chosen for its moderate size, striking a balance between be-
ing suitable for research experiments and sufficiently large
to demonstrate significant task-specific adaptation capabil-
ities. To optimize efficiency and performance, we use
the quantized version of Llama3-8B, which reduces mem-
ory requirements and enhances computational speed dur-
ing fine-tuning. The original LoRA serves as our baseline,
against which we compare multiple LoRA variants, includ-
ing VeRA, DoRA, LoRA-FA, LoRA-drop, and AdaLoRA.
While maintaining uniform training setups for consistency,
exceptions are made for variants like AdaLoRA, which
auto-adjusts ranks for each LoRA layer. By analyzing
these adaptations, we aim to understand their impact on the
model’s ability to handle diverse tasks while maintaining
resource efficiency, and to explore architectural differences
that contribute to variations in performance.

3.1. Model

In this study, we select LLaMA-3 to explore various
types of LoRA fine-tuning. To optimize both efficiency
and performance, we use the quantized version of LLaMA-
3-8B, which reduces memory requirements and improves
computational speed during the fine-tuning process.The
original LoRA serves as our baseline against which we
compare multiple LoRA variants. Specifically, we in-
clude VeRA, DoRA, LoRA-FA, LoRA-drop, and AdaLoRA
in our comparisons to evaluate their respective strengths
and adaptability. By analyzing these variants, we aim to
understand how different adaptations to LoRA impact the
model’s ability to handle different mathematical reasoning
tasks (reasoning, calculation, etc.) while maintaining re-
source efficiency, and potentially explore what difference in
architecture leads to various performances.

3.2. Evaluation and Metrics

We use Llama3:8b model adapted from ollama to eval-
uate the correctness of our baseline and fine-tuned models’
generated answers. We acknowledge the two major chal-
lenges [16] in evaluating LLM-generated answers. They
either require costly human annotators to judge if the gener-
ated answer is correct, or require researchers to pay the price
for api calling to use large models for evaluation purposes.
Yet, new experiments [7, 15] suggest using SOTA small
size LLM such as llama3-8bit may serve benchmarking pur-
poses as emerging LLMs can also help giving annotations.
Specifically, we ask Llama3:8b to compare ground truth
solution with our model generated answers, and formed a



chain of reasoning in judging if the generated answer is cor-
rect. It at the end of its response give a token that is either
< True > or < False >: does the answer match the solu-
tion or not.

To compare if there is really statistically important differ-
ent between each lora variants, we followed the methodlogy
used compute the confidence interval of accuracy / error us-
ing the formula:

ε = z

√
a(1− a)

n

(where ε represents the radius of the confidence interval,
a is the measured accuracy or error, n is the total number
of test samples and z is the number of standard deviations
from the Gaussian distribution) For a 95% of confidence
interval, we set z = 1.96. This binomial confidence inter-
val quantifies the uncertainty in accuracy or error, ensuring
robust comparisons.

These variants are further evaluated based on metrics
such as efficiency and trainable parameters horizontally.
This provides insights into how different LoRA adaptations
impact task performance while maintaining resource effi-
ciency.

3.3. Datasets

To comprehensively evaluate the performance of differ-
ent LoRA variants in terms of mathematical reasoning and
inference capabilities, we selected two datasets, GSM8k [4]
and GSM-PLUS [16], as benchmarks for our experiments.
GSM8k is a widely adopted dataset consisting of around
8k grade-school-level math problems that cover fundamen-
tal arithmetic, basic geometry, and elementary algebra. It
is commonly used to test the understanding and compu-
tational ability of language models for relatively straight-
forward mathematical tasks. However, evaluating mod-
els solely on such foundational problems may not suffi-
ciently reveal their performance in advanced logical rea-
soning, complex inference chains (Chain of Thought, etc.),
and multi-step decision-making. To address this limitation,
GSM-PLUS [16] “extends” GSM8k [4] by introducing sig-
nificantly more challenging problems with higher complex-
ity of reasoning, longer solution paths and questions requir-
ing intricate logical breakdowns in multiple steps. In total,
GSM-PLUS [16] contains more refined and complex prob-
lems around 13k with no potential overallap with GSM8k
[4]. By using both datasets, we aim to assess not only the
fundamental mathematical capabilities of the models but
also their robustness and generalization when confronted
with sophisticated reasoning tasks, seeking if there will be
expected “intruder dimension” (large singular values that
are almost orthogonal to the singular vectors of parameters
for a fine-tuned model) [22] behavior happen that cause un-
willing performance on the modal powered by catastrophic

forgetting. This comprehensive evaluation provides critical
insights to guide further optimization and enhancement of
LoRA variants.

4. Experiments Setup

4.1. data preparation:

Both datasets share similar data split that separates sam-
ples into train and test set. Following this intuitive pattern,
we fine-tuned our model using the train split and performed
evaluation on the test split. For GSM8k, each sample con-
tains a question and a answer texts, where question is the
math question prompt and answer is the ground truth so-
lution. For GSM-plus, though each sample contains more
columns, we only used question and solution (similar to
GSM8k’s answer) column for training and evaluation.

4.2. hyperparameter setup:

For the fine-tuning of LLaMA 3-8B Instruct with vari-
ous LoRA variants, we set the rank to 8 to balance perfor-
mance and memory usage based on our device capacity. For
AdaLoRA, we initialized the rank at 128 and gradually de-
cayed it to 8 during training, leveraging its adaptive rank
reduction strategy.

4.3. Dataset size:

The datasets used for fine-tuning were GSM8k and
GSM-Plus. Following the scaling laws suggested in Ka-
plan et al. (2020) [12], the number of training samples
should be aligned with the model’s parameter count. Ac-
cording to the scaling law D ∝ N0.74, for large models like
LLaMA 3.1, the dataset size should increase proportionally
to avoid overfitting while ensuring that the model can gen-
eralize effectively. The selected training set sizes of 5,603
and 7,908 examples for GSM8k and GSM-Plus respectively
are justified by several considerations:

• Computational Efficiency: The evaluation process
involves using Large Language Models (LLMs) to as-
sess generated answers’ correctness, which is compu-
tationally intensive and time-consuming. It is practical
and necessary to find a balance between dataset size
and computational efficiency.

• Statistically Significant: We randomly selected 500
samples from the test set for evaluation with a con-
fidence level of 95% and margin of error of approx-
imately 4.4%, which is within acceptable ranges for
machine learning research.

5. Result

Our main result is recorded in Table 1.



On the GSM8k mathematical reasoning task, DoRA
achieved the highest accuracy of 80.80% (95% CI: 77.35-
84.25%), marginally outperforming the zero-shot base-
line at 80.60% (95% CI: 77.13-84.07%). The standard
LoRA and LoRA-drop showed comparable performance
at 78.40% and 79.00% respectively, two confidence inter-
val overlap, suggesting no statistically significant difference
between these variants. However, AdaLoRA and LoRA-
FA demonstrated substantially lower performance, achiev-
ing only 43.00% and 38.40% accuracy respectively, indicat-
ing these adaptations may not be well-suited for mathemat-
ical reasoning tasks.

For the GSM-Plus logical reasoning task, we observe
generally lower performance across all variants, suggest-
ing this dataset does contain more challenging problems.
DoRA again emerged as the top performer with 60.60%
accuracy (95% CI: 56.31-64.88%), showing a clear ad-
vantage over other variants. Interestingly, LoRA-FA per-
formed relatively better on this task at 59.60%, contrasting
sharply with its poor performance on GSM8k. The stan-
dard LoRA and LoRA-drop showed similar performance
levels (57.60% and 58.40% respectively), maintaining their
consistent behavior across both tasks. Several key findings
emerge from these results:

1. The consistent superior performance of DoRA across
both tasks suggests its effectiveness in preserving and
adapting the model’s reasoning capabilities, while re-
quiring relatively few parameters (0.8540B).

2. The significant performance gap between mathemati-
cal (GSM8k) and logical reasoning (GSM-Plus) tasks
indicates that logical reasoning problems may require
different or more sophisticated fine-tuning approaches.

3. The narrower confidence intervals and width metrics
for GSM8k compared to GSM-Plus suggest more
consistent model performance on mathematical rea-
soning tasks.

6. Discussion
Our experimental results reveal significant insights into

the performance characteristics and architectural implica-
tions of various LoRA variant’s fine-tuning approaches
across both GSM8k [4] and GSM-Plus [16] datasets.
The findings demonstrate a complex interplay between
model architecture, parameter efficiency, and task complex-
ity, with notable implications for future development of
parameter-efficient fine-tuning methods.

The most striking observation from our experiments
is the consistent superior performance of DoRA across
both datasets, achieving 80.80% accuracy (CI: [77.35%,
84.25%]) on GSM8k and 60.60% (CI: [56.31%, 64.88%])

on GSM-Plus. This exceptional performance can be
attributed to DoRA’s innovative approach to parameter
updates through direction vectors rather than traditional
weight matrices. The direction-based methodology enables
more precise control over the geometric relationships be-
tween parameter updates while maintaining the pre-trained
model’s knowledge structure [17]. This architectural choice
appears particularly beneficial for mathematical reasoning
tasks, where preserving relationships between concepts is
crucial for accurate problem-solving.

Traditional LoRA implementations and their variants
demonstrate interesting performance characteristics that
warrant careful analysis. The baseline LoRA achieves
78.40% accuracy on GSM8k and 57.60% on GSM-Plus,
closely tracking zero-shot performance. This suggests
that the low-rank adaptation [25] effectively captures task-
specific information while preserving the original model’s
mathematical reasoning capabilities. The addition of
dropout to the base LoRA architecture shows minimal im-
provement (79.00% on GSM8k, 58.40% on GSM-Plus),
with confidence intervals significantly overlapping the base
implementation. This marginal enhancement suggests that
LoRA’s inherent low-rank structure might already provide
sufficient regularization, making additional dropout-based
regularization [14] less impactful.

The poor performance of AdaLoRA (43.00%) can be
explained through a more technical lens of singular value
decomposition (SVD) and intruder dimensions [22]. When
AdaLoRA adaptively reduces its rank from 128 to 8
(0.067B to 0.004B parameters), the process can be ana-
lyzed through the SVD of the weight updates ∆W = ABT ,
where A and B are the LoRA matrices. The aggressive rank
reduction creates new singular vectors {vi} that have large
singular values σi but are nearly orthogonal to the princi-
pal components of the original fine-tuned model’s weight
space, i.e., cos(θ) ≈ 0 between these vectors and the orig-
inal model’s key directions. These intruder dimensions
dominate the model’s behavior due to their large singu-
lar values, yet their orthogonality means they fail to pre-
serve the pre-trained mathematical knowledge encoded in
the original weight space [22]. This is particularly problem-
atic because these intruder dimensions effectively create a
subspace that is disconnected from the pre-trained model’s
knowledge manifold, leading to catastrophic interference
with the model’s ability to access its pre-training distribu-
tion. The dramatic reduction in parameters exacerbates this
effect by limiting the model’s capacity to maintain bridges
between the new task-specific knowledge and the original
pre-trained mathematical reasoning capabilities.

The strong zero-shot performance of the base model
(80.60% on GSM8k, 59.80% on GSM-Plus) provides
valuable context for interpreting our fine-tuning results.
The high baseline performance suggests robust pre-trained



Table 1. Performance Comparison of Parameter-Efficient Fine-tuning Methods on Mathematical and Logical Reasoning Tasks

Model Variant Params1 ↑ Acc (%) 95% CI ↓ Width2

GSM8k Mathematical Reasoning Task

DoRA3 0.8540 80.80 (77.35, 84.25) 0.0690
LoRA3 1.7040 78.40 (74.79, 82.01) 0.0721
LoRA-drop3 1.7040 79.00 (75.43, 82.57) 0.0714
AdaLoRA3 0.00424 43.00 (38.66, 47.34) 0.1189
LoRA-FA3 0.0026 38.40 (34.14, 42.66) 0.0853
Zero-shot 8.030 80.60 (77.13, 84.07) 0.0693

GSM-Plus Logical Reasoning Task

DoRA3 0.8540 60.60 (56.31, 64.88) 0.0857
LoRA3 1.7040 57.60 (53.26, 61.93) 0.0866
LoRA-drop3 1.7040 58.40 (54.08, 62.72) 0.0864
AdaLoRA3 0.00424 46.80 (42.42, 51.17) 0.0875
LoRA-FA3 0.0026 59.60 (55.29, 63.90) 0.0860
Zero-shot 8.030 59.80 (55.50, 64.09) 0.0895

1 Parameters shown in billions (×109)
2 Radius calculated for Confidence Interval from the Given Formula.
3 Models fine-tuned with different LoRA variant as update schema for weight.
4 For Adalora, we only report the trianable parameters after rank reduction in the table (Initial trainable parameter: 0.067125248× 109)

Note: GSM8k evaluates mathematical reasoning capabilities, while GSM-Plus tests logical reasoning and bias quotient. Base LLM refers to the original
pre-trained language model without fine-tuning.

mathematical abilities in model llama3 8-bit (instruct) [19],
while the consistent performance gap between datasets (ap-
proximately 20%) indicates inherent limitations in com-
plex reasoning capabilities. The fact that DoRA matches
or exceeds zero-shot performance with fewer parameters
(0.8540M vs 8.030M) demonstrates effective knowledge
transfer during fine-tuning, while the performance degra-
dation in lightweight variants reinforces the existence of a
minimum parameter threshold for effective adaptation.

6.1. Architectural Implications

These findings suggest several key principles for the de-
sign of LoRA variants. The success of DoRA’s direction-
based approach indicates the importance of geometric
preservation [19] in parameter updates, suggesting that fu-
ture architectures should prioritize maintaining geometric
relationships in parameter space. Our results also point
to the existence of critical parameter thresholds (approxi-
mately 0.8-1.7M) for maintaining performance, highlight-
ing the need for careful balance between parameter effi-
ciency and task complexity. Furthermore, the varying ef-
fectiveness of different architectural choices across task
types emphasizes the importance of task-specific adaptation
mechanisms.

6.2. Limitations and Future Work

Several limitations of our study warrant consideration
and suggest directions for future research. The use of
Llama3-8b [19] for validation, while practical, might in-
troduce systematic biases in our evaluation methodology.
The binary correctness metric may not capture partial un-
derstanding or reasoning capabilities, and the confidence
intervals in our results suggest the need for larger test sets.
Future work should explore:

• Hybrid architectures combining DoRA’s directional
learning with AdaLoRA’s adaptive rank mechanism

• Investigation of frequency-aware directional updates

• Development of task-specific downstream adaptation
mechanisms

7. Conclusion
In this work, we conducted a comprehensive empiri-

cal investigation of various LoRA variants’ performance on
mathematical and logical reasoning tasks using the Llama3-
8B model. Our experiments reveal that direction-based
parameter updates, as implemented in DoRA, consistently
outperform other variants, achieving 80.80% accuracy on
GSM8k and 60.60% on GSM-Plus, compared to base-
line LoRA’s 78.40% and 57.60% respectively. This su-



perior performance can be attributed to DoRA’s preser-
vation of geometric relationships in parameter space dur-
ing fine-tuning, which proves crucial for maintaining pre-
trained mathematical knowledge while adapting to specific
tasks. Our analysis further identifies a critical parame-
ter threshold (approximately 0.8-1.7M parameters) below
which performance significantly degrades, as evidenced by
the performance patterns of ultra-lightweight variants like
AdaLoRA and LoRA-FA. However, the performance re-
covery of LoRA-FA on complex reasoning tasks (59.60%
on GSM-Plus) suggests that optimal architectural choices
may be task-dependent. These findings, combined with the
strong zero-shot performance of the base model, indicate
that future development of parameter-efficient fine-tuning
methods should focus on task-specific adaptation mecha-
nisms while maintaining geometric relationships in param-
eter space, potentially through hybrid approaches that com-
bine the strengths of different variants.
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Appendix

0.1 Testing Prompt Usage*
Here is the curated prompt we feed in to let llama3 8-bit to
do ground truth and generated answer comparison.

prompt = f’’’
You are given a predicted answer and a ground truth solution,
determinant whether the predicted answer match the ground truth answer.
End your response with <True> or <False> predicted answer:
{generated_answer}
ground truth solution:
{answer_part}

’’’

0.2 Confidence Interval Chart*
For better visibility, we plot the Confidence Interval chart
for two tested datasets among different LoRA variants side
by side horizontally in the next page.
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